Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin (2 x)=\frac{\sqrt{5}-1}{4}$ then $x=\frac{n}{2} \pi+(-1)^n(m)$, $n \in \mathbf{Z}$, find $m$.
Options:
Solution:
1112 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{20}$
$$
\text { } \begin{aligned}
\sin 2 x & =\frac{\sqrt{5}-1}{4} \\
\sin 2 x & =\sin \frac{\pi}{10} \\
2 x & =n \pi+(-1)^n \frac{\pi}{10} \\
x & =\frac{n \pi}{2}+(-1)^n \frac{\pi}{20}
\end{aligned}
$$
but given,
$$
x=\frac{n \pi}{2}+(-1)^n \cdot m
$$
On comparison, we get $m=\frac{\pi}{20}$ Hence, option (3) is correct.
\text { } \begin{aligned}
\sin 2 x & =\frac{\sqrt{5}-1}{4} \\
\sin 2 x & =\sin \frac{\pi}{10} \\
2 x & =n \pi+(-1)^n \frac{\pi}{10} \\
x & =\frac{n \pi}{2}+(-1)^n \frac{\pi}{20}
\end{aligned}
$$
but given,
$$
x=\frac{n \pi}{2}+(-1)^n \cdot m
$$
On comparison, we get $m=\frac{\pi}{20}$ Hence, option (3) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.