Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin \theta=\frac{24}{25}$ and $\theta$ lies in the second quadrant, then $\operatorname{sec} \theta+\tan \theta=$
Options:
Solution:
2851 Upvotes
Verified Answer
The correct answer is:
-7
$\begin{aligned}
\sin \theta=\frac{24}{25} \Rightarrow \cos \theta & =\frac{-7}{25}, \tan \theta=\frac{-24}{7} \\
\therefore \quad \sec \theta+\tan \theta & =\frac{-25}{7}+\frac{-24}{7}=-7
\end{aligned}$
\sin \theta=\frac{24}{25} \Rightarrow \cos \theta & =\frac{-7}{25}, \tan \theta=\frac{-24}{7} \\
\therefore \quad \sec \theta+\tan \theta & =\frac{-25}{7}+\frac{-24}{7}=-7
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.