Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin \theta=-\frac{3}{4}$, then $\sin 2 \theta=$
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2022 (05 Jul Shift 1)
Options:
  • A $\frac{3 \sqrt{7}}{8}$
  • B $-\frac{3 \sqrt{7}}{8}$
  • C $\frac{2 \sqrt{3}}{7}$
  • D $-\frac{2 \sqrt{3}}{7}$
Solution:
1905 Upvotes Verified Answer
The correct answer is: $-\frac{3 \sqrt{7}}{8}$
If $\sin \theta=\frac{-3}{4}$
$\begin{aligned} & \cos \theta=\sqrt{1-\sin ^2 \theta} \\ & \cos \theta=\sqrt{1-\left(\frac{-3}{4}\right)^2} \\ & \cos \theta=\sqrt{\frac{16-9}{4}}=\sqrt{\frac{7}{16}}\end{aligned}$
$\therefore \sin 2 \theta=2 \sin \theta \cdot \cos \theta$
$=2 \times\left(\frac{-3}{4}\right)\left(\frac{\sqrt{7}}{4}\right)=\frac{-3 \sqrt{7}}{8}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.