Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin ^4 \theta \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta$, then the least $n$ for which $a_{2 n}=0$ is
Options:
Solution:
1332 Upvotes
Verified Answer
The correct answer is:
$1$
Given,
$\sin ^4 \theta \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta$
$\begin{aligned} & \Rightarrow\left(\sin ^2 \theta\right)^2 \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta \\ & \Rightarrow\left(1-\cos ^2 \theta\right)^2 \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta \\ & \Rightarrow\left(1+\cos ^4 \theta-2 \cos ^2 \theta\right) \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta\end{aligned}$
$\therefore \quad \cos ^2 \theta+\cos ^4 \theta \cos ^2 \theta-2 \cos ^4 \theta$
$=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta$

On comparing both sides, we get minimum value of $n$ is 1 .
$\sin ^4 \theta \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta$
$\begin{aligned} & \Rightarrow\left(\sin ^2 \theta\right)^2 \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta \\ & \Rightarrow\left(1-\cos ^2 \theta\right)^2 \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta \\ & \Rightarrow\left(1+\cos ^4 \theta-2 \cos ^2 \theta\right) \cos ^2 \theta=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta\end{aligned}$
$\therefore \quad \cos ^2 \theta+\cos ^4 \theta \cos ^2 \theta-2 \cos ^4 \theta$
$=\sum_{n=0}^{\infty} a_{2 n} \cos 2 n \theta$

On comparing both sides, we get minimum value of $n$ is 1 .
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.