Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin ^{4} x-\cos ^{4} x=p$, then which one of the following is correct?
MathematicsTrigonometric Ratios & IdentitiesNDANDA 2009 (Phase 1)
Options:
  • A $\mathrm{p}=1$
  • B $p=0$
  • C $|\mathrm{p}|>1$
  • D $|\mathrm{p}| \leq 1$
Solution:
1485 Upvotes Verified Answer
The correct answer is: $|\mathrm{p}| \leq 1$
Consider $\sin ^{4} x-\cos ^{4} x=p$
$\Rightarrow\left(\sin ^{2} x\right)^{2}-\left(\cos ^{2} x\right)^{2}=p$
$\Rightarrow\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right)=p$
$\Rightarrow \sin ^{2} x-\cos ^{2} x=p\left(\because \sin ^{2} x+\cos ^{2} x=1\right)$
$\Rightarrow-\cos 2 x=p \quad\left(\because \cos ^{2} x-\sin ^{2} x=\cos 2 x\right)$
$\Rightarrow \cos 2 x=-p$
$\therefore \quad|p| \leq 1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.