Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin 6 \theta=32 \cos ^5 \theta \sin \theta-32 \cos ^3 \theta \sin \theta+3 x$ then $x$ is equal to :
MathematicsTrigonometric EquationsAP EAMCETAP EAMCET 2003
Options:
  • A $\cos \theta$
  • B $\cos 2 \theta$
  • C $\sin \theta$
  • D $\sin 2 \theta$
Solution:
2649 Upvotes Verified Answer
The correct answer is: $\sin 2 \theta$
We have,
$\sin 6 \theta=\sin 3(2 \theta)$
$=3 \sin 2 \theta-4 \sin ^3 2 \theta$
$=3 \cdot 2 \sin \theta \cos \theta-4 \cdot 8 \cdot \cos ^3 \theta \sin ^3 \theta$
$=6 \sin \theta \cos \theta-32 \cos ^3 \theta \sin \theta\left(1-\cos ^2 \theta\right)$
$\sin 6 \theta=32 \cos ^5 \theta \cdot \sin \theta$ $-32 \cos ^3 \theta \sin \theta+3 \sin 2 \theta \ldots$ (i)
Given that,
$\sin 6 \theta=32 \cos ^5 \theta \sin \theta-32 \cos ^3 \theta \sin \theta+3 x$ $\ldots$ (ii)
On comparing Eqs. (i) and (ii), we get
$3 x=3 \sin 2 \theta \Rightarrow x=\sin 2 \theta$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.