Search any question & find its solution
Question:
Answered & Verified by Expert
If \(\sin \left(\cot ^{-1}(1+\mathrm{x})\right)=\cos \left(\tan ^{-1} \mathrm{x}\right)\), then \(\mathrm{x}=\)
Options:
Solution:
1025 Upvotes
Verified Answer
The correct answer is:
\(-\frac{1}{2}\)

\(\begin{aligned}
& \sin \left(\cot ^{-1}(1+x)\right)=\frac{1}{\sqrt{2+2 x+x^2}} \\
& \cos \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{1+x^2}}
\end{aligned}\)
So, \(\frac{1}{\sqrt{2+2 x+x^2}}=\frac{1}{\sqrt{1+x^2}}\)
\(\Rightarrow 1+2 \mathrm{x}=0 \Rightarrow \mathrm{x}=-\frac{1}{2}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.