Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(\sin \left(\cot ^{-1}(1+\mathrm{x})\right)=\cos \left(\tan ^{-1} \mathrm{x}\right)\), then \(\mathrm{x}=\)
MathematicsInverse Trigonometric FunctionsVITEEEVITEEE 2022
Options:
  • A \(\frac{1}{2}\)
  • B 1
  • C 0
  • D \(-\frac{1}{2}\)
Solution:
1025 Upvotes Verified Answer
The correct answer is: \(-\frac{1}{2}\)


\(\begin{aligned}
& \sin \left(\cot ^{-1}(1+x)\right)=\frac{1}{\sqrt{2+2 x+x^2}} \\
& \cos \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{1+x^2}}
\end{aligned}\)
So, \(\frac{1}{\sqrt{2+2 x+x^2}}=\frac{1}{\sqrt{1+x^2}}\)
\(\Rightarrow 1+2 \mathrm{x}=0 \Rightarrow \mathrm{x}=-\frac{1}{2}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.