Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin \theta+\sin ^2 \theta=1$ and $\cos ^{12} \theta+a \cos ^{10} \theta+b \cos ^8 \theta+c \cos ^6 \theta+d=0$, then
Options:
Solution:
2172 Upvotes
Verified Answer
The correct answer is:
$a c+b d=0$
We have,
$$
\Rightarrow \quad \begin{aligned}
\sin \theta+\sin ^2 \theta & =1 \Rightarrow \sin \theta=1-\sin ^2 \theta \\
\sin \theta & =\cos ^2 \theta
\end{aligned}
$$
We know that,
$$
\begin{aligned}
&\left(\sin ^2 \theta+\cos ^2 \theta\right)^3-1=0 \\
& \Rightarrow \quad\left(\cos ^4 \theta+\cos ^2 \theta\right)^3-1=0 \\
& \Rightarrow\left(\cos ^{12} \theta+3 \cos ^{10} \theta+3 \cos ^8 \theta+\cos ^6 \theta\right)-1=0 \\
& \Rightarrow \cos ^{22} \theta+3 \cos ^{20} \theta+3 \cos ^8 \theta+\cos ^6 \theta-1=0
\end{aligned}
$$
On comparing, we get
$$
\begin{aligned}
a & =3, b=3, c=1, d=-1 \\
\therefore \quad a c+b d & =3 \times 1+3 \times-1=3-3=0
\end{aligned}
$$
$$
\Rightarrow \quad \begin{aligned}
\sin \theta+\sin ^2 \theta & =1 \Rightarrow \sin \theta=1-\sin ^2 \theta \\
\sin \theta & =\cos ^2 \theta
\end{aligned}
$$
We know that,
$$
\begin{aligned}
&\left(\sin ^2 \theta+\cos ^2 \theta\right)^3-1=0 \\
& \Rightarrow \quad\left(\cos ^4 \theta+\cos ^2 \theta\right)^3-1=0 \\
& \Rightarrow\left(\cos ^{12} \theta+3 \cos ^{10} \theta+3 \cos ^8 \theta+\cos ^6 \theta\right)-1=0 \\
& \Rightarrow \cos ^{22} \theta+3 \cos ^{20} \theta+3 \cos ^8 \theta+\cos ^6 \theta-1=0
\end{aligned}
$$
On comparing, we get
$$
\begin{aligned}
a & =3, b=3, c=1, d=-1 \\
\therefore \quad a c+b d & =3 \times 1+3 \times-1=3-3=0
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.