Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If slope of a tangent to the curve $x y+a x+b y=0$ at the point $(1,1)$ on it is 2 , then $a-b$ is
MathematicsApplication of DerivativesMHT CETMHT CET 2023 (09 May Shift 2)
Options:
  • A 3
  • B 1
  • C 2
  • D -1
Solution:
1303 Upvotes Verified Answer
The correct answer is: 3
Given curve is
$\begin{aligned}
& x y+\mathrm{a} x+\mathrm{b} y=0 \\
\therefore \quad & \text { Slope }=2=\frac{\mathrm{d} y}{\mathrm{~d} x} \\
\therefore \quad & x y+\mathrm{a} x+\mathrm{b} y=0
\end{aligned}$
Differentiating w.r.t. $x$, we get
$\begin{aligned}
& x \frac{\mathrm{d} y}{\mathrm{~d} x}+y+\mathrm{a}+\mathrm{b} \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\
& \therefore \quad(x+\mathrm{b}) \frac{\mathrm{d} y}{\mathrm{~d} x}=-(y+\mathrm{a}) \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-(y+\mathrm{a})}{x+\mathrm{b}} \\
& \therefore \quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{(1,1)}=2 \\
& \therefore \quad 2=\frac{-(1+\mathrm{a})}{1+\mathrm{b}} \\
& \therefore \quad \mathrm{a}+2 \mathrm{~b}=-3 ... (i)
\end{aligned}$
Since $(1,1)$ lies on $x y+a x+b y=0$, we get $\mathbf{a}+\mathbf{b}=-1$ ... (ii)
Solving (i), (ii), we get
$\begin{aligned}
& a=1, b=-2 \\
\therefore \quad & a-b=1-(-2)=3
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.