Search any question & find its solution
Question:
Answered & Verified by Expert
If \( \sqrt[3]{y} \sqrt{x}=\sqrt[6]{(x+y)^{5}} \), then \( \frac{d y}{d x}= \)
Options:
Solution:
2845 Upvotes
Verified Answer
The correct answer is:
\( \frac{y}{x} \)
(B)
\[
\begin{array}{l}
\sqrt[3]{y} \sqrt{x}=\sqrt[6]{(x+y)^{5}} \\
\Rightarrow y^{2} x^{3}=(x+y)^{5} \\
\Rightarrow y^{2} x^{3}=y^{5}\left(\frac{x}{y}+1\right)^{5} \\
\Rightarrow\left(\frac{x}{y}\right)^{3}=\left(\frac{x}{y}+1\right)^{5} \\
\Rightarrow \frac{d y}{d x}=\frac{y}{x} \\
f\left(\frac{x}{y}\right)=c \Rightarrow \frac{d y}{d x}=\frac{y}{x}
\end{array}
\]
\[
\begin{array}{l}
\sqrt[3]{y} \sqrt{x}=\sqrt[6]{(x+y)^{5}} \\
\Rightarrow y^{2} x^{3}=(x+y)^{5} \\
\Rightarrow y^{2} x^{3}=y^{5}\left(\frac{x}{y}+1\right)^{5} \\
\Rightarrow\left(\frac{x}{y}\right)^{3}=\left(\frac{x}{y}+1\right)^{5} \\
\Rightarrow \frac{d y}{d x}=\frac{y}{x} \\
f\left(\frac{x}{y}\right)=c \Rightarrow \frac{d y}{d x}=\frac{y}{x}
\end{array}
\]
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.