Search any question & find its solution
Question:
Answered & Verified by Expert
If $\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=a \cos 8 x+c$, then $a=$
Options:
Solution:
2202 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{16}$
$\mathrm{LHS}=\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x$
$=\int \frac{2 \cos ^{2} 4 x}{\left(\frac{\sin ^{2} 2 x-\cos ^{2} 2 x}{\sin 2 x \cos 2 x}\right)} d x$
$\left[\because \cos 2 x=2 \cos ^{2} x-1\right]$
$=-\int \frac{\cos ^{2} 4 x(2 \sin 2 x \cos 2 x)}{\left(\cos ^{2} 2 x-\sin ^{2} 2 x\right)} d x$
$=-\int \frac{\cos ^{2} 4 x \times \sin 4 x}{\cos 4 x} d x$
$[\because \sin 2 x=2 \sin x \cos x]$
$=-\frac{1}{2} \int 2 \sin 4 x \cos 4 x d x$
$=-\frac{1}{2} \int \sin 8 x d x=\frac{1}{2} \times \frac{\cos 8 x}{8}+c$
Now, $\frac{1}{2} \frac{\cos 8 x}{8}+c=a \cos 8 x+c$
$\therefore \quad a=\frac{1}{16}$
$=\int \frac{2 \cos ^{2} 4 x}{\left(\frac{\sin ^{2} 2 x-\cos ^{2} 2 x}{\sin 2 x \cos 2 x}\right)} d x$
$\left[\because \cos 2 x=2 \cos ^{2} x-1\right]$
$=-\int \frac{\cos ^{2} 4 x(2 \sin 2 x \cos 2 x)}{\left(\cos ^{2} 2 x-\sin ^{2} 2 x\right)} d x$
$=-\int \frac{\cos ^{2} 4 x \times \sin 4 x}{\cos 4 x} d x$
$[\because \sin 2 x=2 \sin x \cos x]$
$=-\frac{1}{2} \int 2 \sin 4 x \cos 4 x d x$
$=-\frac{1}{2} \int \sin 8 x d x=\frac{1}{2} \times \frac{\cos 8 x}{8}+c$
Now, $\frac{1}{2} \frac{\cos 8 x}{8}+c=a \cos 8 x+c$
$\therefore \quad a=\frac{1}{16}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.