Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x$, then $x$ is
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2023 (12 May Shift 2)
Options:
  • A $1$
  • B $\sqrt{3}$
  • C $\frac{1}{\sqrt{3}}$
  • D $\frac{1}{2 \sqrt{3}}$
Solution:
2792 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{3}}$
$\begin{aligned} & \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x \\ & \Rightarrow \tan ^{-1}(1)-\tan ^{-1}(x)=\frac{1}{2} \tan ^{-1} x \\ & \Rightarrow \frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x \\ & \Rightarrow x=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.