Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\left(\tan ^{-1} x\right)^2+\left(\cot ^{-1} x\right)^2=\frac{5 \pi^2}{8}$, then the value of $x$ is
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2023 (13 May Shift 2)
Options:
  • A $-2$
  • B $-1$
  • C 1
  • D 2
Solution:
1719 Upvotes Verified Answer
The correct answer is: $-1$
$\left(\tan ^{-1} x\right)^2+\left(\cot ^{-1} x\right)^2=\frac{5 \pi^2}{8}$
$\Rightarrow\left(\tan ^{-1} x+\cot ^{-1} x\right)^2-2 \tan ^{-1} x \cot ^{-1} x=\frac{5 \pi^2}{8}$
$\Rightarrow\left(\tan ^{-1} x+\cot ^{-1} x\right)^2$
$-2 \tan ^{-1} x\left(\frac{\pi}{2}-\tan ^{-1} x\right)=\frac{5 \pi^2}{8}$
$\begin{aligned} & \Rightarrow \frac{\pi^2}{4}-2 \times \frac{\pi}{2} \tan ^{-1} x+2\left(\tan ^{-1} x\right)^2=\frac{5 \pi^2}{8} \\ & \Rightarrow 2\left(\tan ^{-1} x\right)^2-\pi \tan ^{-1} x-\frac{3 \pi^2}{8}=0 \\ & \Rightarrow \tan ^{-1} x=-\frac{\pi}{4}, \frac{3 \pi}{4} \\ & \Rightarrow \tan ^{-1} x=-\frac{\pi}{4} \Rightarrow x=-1\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.