Search any question & find its solution
Question:
Answered & Verified by Expert
If $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$, then $x$ is
Options:
Solution:
2390 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{2}$
Given equation $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$
$$
\begin{aligned}
&\Rightarrow \tan ^{-1} x=\tan ^{-1}(1)-\tan ^{-1}\left(\frac{1}{3}\right) \\
&\left.\Rightarrow \quad \tan ^{-1} x=\tan ^{-1}\left(\frac{1-\frac{\pi}{3}}{1+\frac{1}{3}}\right) \tan ^{-1}(1)\right) \\
&\Rightarrow \quad\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right] \\
&\Rightarrow \quad \tan ^{-1} x=\tan ^{-1}\left(\frac{2 / 3}{4 / 3}\right) \\
&\Rightarrow \quad x=1 / 2
\end{aligned}
$$
$$
\begin{aligned}
&\Rightarrow \tan ^{-1} x=\tan ^{-1}(1)-\tan ^{-1}\left(\frac{1}{3}\right) \\
&\left.\Rightarrow \quad \tan ^{-1} x=\tan ^{-1}\left(\frac{1-\frac{\pi}{3}}{1+\frac{1}{3}}\right) \tan ^{-1}(1)\right) \\
&\Rightarrow \quad\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right] \\
&\Rightarrow \quad \tan ^{-1} x=\tan ^{-1}\left(\frac{2 / 3}{4 / 3}\right) \\
&\Rightarrow \quad x=1 / 2
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.