Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$, then $x$ is
MathematicsInverse Trigonometric FunctionsKCETKCET 2011
Options:
  • A $\frac{1}{3}$
  • B $\frac{1}{2}$
  • C $\frac{1}{4}$
  • D $\frac{1}{6}$
Solution:
2390 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}$
Given equation $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3}\right)$
$$
\begin{aligned}
&\Rightarrow \tan ^{-1} x=\tan ^{-1}(1)-\tan ^{-1}\left(\frac{1}{3}\right) \\
&\left.\Rightarrow \quad \tan ^{-1} x=\tan ^{-1}\left(\frac{1-\frac{\pi}{3}}{1+\frac{1}{3}}\right) \tan ^{-1}(1)\right) \\
&\Rightarrow \quad\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right] \\
&\Rightarrow \quad \tan ^{-1} x=\tan ^{-1}\left(\frac{2 / 3}{4 / 3}\right) \\
&\Rightarrow \quad x=1 / 2
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.