Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\text { If } \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$
then $1-x y-y z-z x$ is equal to
MathematicsInverse Trigonometric FunctionsTS EAMCETTS EAMCET 2010
Options:
  • A 1
  • B 0
  • C -1
  • D 2
Solution:
1549 Upvotes Verified Answer
The correct answer is: 0
$\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$
$\Rightarrow\left(\tan ^{-1} x+\tan ^{-1} y\right)+\tan ^{-1} z=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1}\left(\frac{x+y}{1-x y}\right)+\tan ^{-1} z=\frac{\pi}{2}$
$\Rightarrow \quad \tan ^{-1}\left[\frac{\frac{(x+y)}{1-x y}+z}{1-z\left(\frac{x+y}{1-x y}\right)}\right]=\frac{\pi}{2}$
$\Rightarrow \frac{(x+y)+z(1-x y)}{(1-x y)-z(x+y)}=\tan \frac{\pi}{2}=\infty$
ie, $\quad(1-x y)-z(x+y)=0$
$\Rightarrow \quad 1-x y-z x-y z=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.