Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}, \quad x, y, z>0, x y < 1, \quad$ then the value of
$x y+y z+z x=$
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2020 (20 Oct Shift 2)
Options:
  • A $x y z$
  • B 0
  • C 1
  • D $-x y z$
Solution:
2892 Upvotes Verified Answer
The correct answer is: 1
$\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$
$\therefore\left(\tan ^{-1} x+\tan ^{-1} y\right)=\left(\frac{\pi}{2}-\tan ^{-1} z\right)$
$\therefore \tan ^{-1}\left(\frac{x+y}{1-x y}\right)=\cot ^{-1} z=\tan ^{-1}\left(\frac{1}{z}\right)$
$\therefore \frac{x+y}{1-x y}=\frac{1}{z} \Rightarrow x z+y z=1-x y$
$\therefore x y+y z+z x=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.