Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\tan A+\cot A=2$, then the value of $\tan ^{4} A+\cot ^{4} A=$
MathematicsBinomial TheoremKCETKCET 2020
Options:
  • A 2
  • B 1
  • C 4
  • D 5
Solution:
2919 Upvotes Verified Answer
The correct answer is: 2
We have, $\tan A+\cot A=2$
$\begin{aligned}
&(\tan A+\cot A)^{2}=(2)^{2} \\
&\tan ^{2} A+\cot ^{2}+2=4 \\
&\tan ^{2} A+\cot ^{2} A=2 \\
&\left(\tan ^{2} A+\cot ^{2} A\right)^{2}=(2)^{2} \\
&\tan ^{4} A+\cot ^{4} A+2=4 \\
&\tan ^{4} A+\cot ^{4} A=2
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.