Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\tan A-\tan B=x$ and $\cot B-\cot A=y$, then what is cot
$(A-B)$ equal to?
MathematicsTrigonometric Ratios & IdentitiesNDANDA 2011 (Phase 2)
Options:
  • A $\frac{1}{y}-\frac{1}{x}$
  • B $\frac{1}{x}-\frac{1}{y}$
  • C $\frac{1}{x}+\frac{1}{y}$
  • D $-\frac{1}{x}-\frac{1}{y}$
Solution:
2029 Upvotes Verified Answer
The correct answer is: $\frac{1}{x}+\frac{1}{y}$
Let $\tan A-\tan B=x$ and $\cot B-\cot A=y$.
$\Rightarrow \frac{1}{\tan B}-\frac{1}{\tan A}=y$
$\Rightarrow \frac{\tan A-\tan B}{\tan A \tan B}=y \Rightarrow \frac{x}{\tan A \tan B}=y$
Consider $\cot (A-B)=\left(\frac{1}{\tan (A-B)}\right)$
$=\frac{1+\tan A \tan B}{\tan A-\tan B}=\frac{1+\frac{x}{y}}{x}=\frac{y+x}{x y}=\frac{1}{x}+\frac{1}{y}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.