Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(\tan \mathrm{h}^{-1}(x+i y)=\frac{1}{2} \tan \mathrm{h}^{-1}\left(\frac{2 x}{1+x^2+y^2}\right)+\frac{i}{2} \tan ^{-1}\left(\frac{2 y}{1-x^2-y^2}\right)\), where \(x, y \in \mathbf{R}\), then \(\tan \mathrm{h}^{-1}(i y)=\)
MathematicsInverse Trigonometric FunctionsAP EAMCETAP EAMCET 2020 (18 Sep Shift 2)
Options:
  • A \(i \tanh ^{-1}(y)\)
  • B \(-i \tanh ^{-1}(y)\)
  • C \(i \tan ^{-1}(y)\)
  • D \(-i \tan ^{-1}(y)\)
Solution:
2069 Upvotes Verified Answer
The correct answer is: \(i \tan ^{-1}(y)\)
We have,
\(\tan \mathrm{h}^{-1}(x)=\frac{1}{i} \tan ^{-1}(i x)\)
Put, \(\quad x=i y\), we get
\(\tan \mathrm{h}^{-1}(i y)=\frac{1}{i} \tan ^{-1}(-y)=\frac{-1}{i} \tan ^{-1}(y)=i \tan ^{-1}(y)\)
Hence, option (c) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.