Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the angle between the circles $x^2+y^2-12 x-6 y+41=0$ and $x^2+y^2+k x+6 y-59=0$ is $45^{\circ}$, then a value of $k$ is
MathematicsCircleAP EAMCETAP EAMCET 2018 (23 Apr Shift 1)
Options:
  • A 0
  • B -4
  • C -3
  • D -1
Solution:
1837 Upvotes Verified Answer
The correct answer is: -4
Given circles,
$$
\begin{aligned}
x^2+y^2-12 x-6 y+41 & =0 \\
\text { and } x^2+y^2+k x+6 y-59 & =0
\end{aligned}
$$
Centre of first circle is $(6,3)$ and radius
$$
r_1=\sqrt{36-9-4}=2
$$
Centre of second circle is $\left(\frac{k}{2},-3\right)$ and radius
$$
r=\sqrt{\frac{k^2}{4}+9+59}=\sqrt{\frac{k^2}{4}+68}
$$
Now, distance between centres is
$$
\begin{aligned}
& d=\sqrt{\left(\frac{k}{2}-6\right)^2+6^2} \\
& d=\sqrt{\frac{k^2}{4}-6 k+72}
\end{aligned}
$$
Now, $\cos \theta=\frac{r_1^2+r_2^2-d^2}{2 r_1 r_2}$
$$
\begin{aligned}
& \Rightarrow \quad \cos 45^{\circ}=\frac{r_1^2+r_2^2-d^2}{2 r_1 r_2} \\
& \Rightarrow 2 \cdot \sqrt{2} \sqrt{\frac{k^2}{4}+68}=4+\frac{k^2}{4}+68-\frac{k^2}{4}+6 k-72 \\
& \Rightarrow \quad 2 \sqrt{2} \sqrt{\frac{k^2}{4}+68}=6 k \\
& \Rightarrow \quad \frac{k^2}{4}+68=\frac{36 k^2}{8} \Rightarrow \frac{17 k^2}{4}=68
\end{aligned}
$$
$\begin{aligned} & \Rightarrow \quad k^2=16 \Rightarrow k^2= \pm 4 \\ & \text { Hence, } \quad k=-4 \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.