Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the angle between the pair of tangents drawn to the circle $x^2+y^2-2 x+4 y+3=0$ from $(6,-5)$ is $\theta$, then $\tan \theta=$
MathematicsCircleTS EAMCETTS EAMCET 2020 (09 Sep Shift 2)
Options:
  • A $\frac{5}{8}$
  • B $\frac{15}{8}$
  • C $\frac{8}{15}$
  • D $\frac{19}{8}$
Solution:
1079 Upvotes Verified Answer
The correct answer is: $\frac{8}{15}$


Equation of circle is $x^2+y^2-2 x+4 y+3=0$
$\therefore$ Length of $P A=\sqrt{S_1}$
$\begin{aligned} & =\sqrt{(6)^2+(-5)^2-2(6)+4(-5)+3} \\ & =\sqrt{56+25-12-20+3} \\ & =\sqrt{32}=4 \sqrt{2}\end{aligned}$
and radius, $O A=\sqrt{(1)^2+(-2)^2-3}=\sqrt{1+4-3}=\sqrt{2}$
$\therefore$ In $\triangle A O P$,
$\begin{gathered}\tan \frac{\theta}{2}=\frac{O A}{A P}=\frac{\sqrt{2}}{4 \sqrt{2}}=\frac{1}{4} \\ \therefore \tan \theta=\frac{2 \tan \theta / 2}{1-\tan ^2 \theta / 2}=\frac{2 \times \frac{1}{4}}{1-\left(\frac{1}{4}\right)^2}=\frac{\frac{1}{15}}{\frac{15}{16}}=\frac{8}{15}\end{gathered}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.