Search any question & find its solution
Question:
Answered & Verified by Expert
If the angles $A, B$ and $C$ of $\triangle A B C$ are in arithmetic progression, then
Options:
Solution:
1484 Upvotes
Verified Answer
The correct answer is:
$b^2=a^2+c^2-a c$
The angles of $\triangle A B C$ are in AP.
$\therefore \quad 2 B=A+C \quad\left[\because A+B+C=180^{\circ}\right]$
$\Rightarrow \quad 2 B=180^{\circ}-B \Rightarrow B=60^{\circ}$
Now, $\cos B=\frac{a^2+c^2-b^2}{2 a c}$
$\cos 60^{\circ}=\frac{a^2+c^2-b^2}{2 a c} \Rightarrow \frac{1}{2}=\frac{a^2+c^2-b^2}{2 a c}$
$\therefore \quad b^2=a^2+c^2-a c$
$\therefore \quad 2 B=A+C \quad\left[\because A+B+C=180^{\circ}\right]$
$\Rightarrow \quad 2 B=180^{\circ}-B \Rightarrow B=60^{\circ}$
Now, $\cos B=\frac{a^2+c^2-b^2}{2 a c}$
$\cos 60^{\circ}=\frac{a^2+c^2-b^2}{2 a c} \Rightarrow \frac{1}{2}=\frac{a^2+c^2-b^2}{2 a c}$
$\therefore \quad b^2=a^2+c^2-a c$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.