Search any question & find its solution
Question:
Answered & Verified by Expert
If the angles made by a straight line with the coordinate axes are $\alpha, \frac{\pi}{2}-\alpha, \beta$, then $\beta$ is equal to
Options:
Solution:
2992 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{2}$
We know that, if $\alpha, \beta, \gamma$ are angles of a line which makes from the coordinate axes

But, given $\alpha=\alpha, \beta=\frac{\pi}{2}-\alpha, \gamma=\beta$
From Eq. (i)
$\cos ^2 \alpha+\cos ^2\left(\frac{\pi}{2}-\alpha\right)+\cos ^2 \beta=1$
$\begin{array}{cc}\Rightarrow & \left(\cos ^2 \alpha+\sin ^2 \alpha\right)+\cos ^2 \beta=1 \\ \Rightarrow & \cos ^2 \beta=0 \\ \Rightarrow & \cos \beta=0=\cos \frac{\pi}{2} \\ \Rightarrow & \beta=\frac{\pi}{2}\end{array}$

But, given $\alpha=\alpha, \beta=\frac{\pi}{2}-\alpha, \gamma=\beta$
From Eq. (i)
$\cos ^2 \alpha+\cos ^2\left(\frac{\pi}{2}-\alpha\right)+\cos ^2 \beta=1$
$\begin{array}{cc}\Rightarrow & \left(\cos ^2 \alpha+\sin ^2 \alpha\right)+\cos ^2 \beta=1 \\ \Rightarrow & \cos ^2 \beta=0 \\ \Rightarrow & \cos \beta=0=\cos \frac{\pi}{2} \\ \Rightarrow & \beta=\frac{\pi}{2}\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.