Search any question & find its solution
Question:
Answered & Verified by Expert
If the area between $y=m x^{2}$ and $x=m y^{2}(m>0)$ is $1 / 4 \mathrm{sq}$ units, then the value of $m$ is
Options:
Solution:
2917 Upvotes
Verified Answer
The correct answer is:
$\pm \frac{2}{\sqrt{3}}$
Given curves; $y=m x^{2}$ and $y^{2} m=x ; m>0$
Intersection point of both curves;
$x=m\left(m x^{2}\right)^{2}=m^{3} x^{4}$
$\Rightarrow \quad m^{3} x^{4}-x=0$
$$
\begin{array}{cc}
\Rightarrow & x\left(m^{3} x^{3}-1\right)=0 \\
\Rightarrow & x(m x-1)\left(m^{2} x^{2}+1+m x\right)=0 \\
\Rightarrow & x=0, x=1 / m \text { and } y=0, y=1 / m
\end{array}
$$
We take only the points
$$
=(0,0) \text { and }(1 / m, 1 / m)
$$
Now, the area of the curve
$$
\begin{aligned}
&=\int_{0}^{1 / m}\left(\sqrt{\frac{x}{m}}-m x^{2}\right) d x \\
\text { Given, } \quad \frac{1}{4} &=\left[\frac{2}{3 \sqrt{m}} \cdot x^{3 / 2}-m \cdot \frac{x^{3}}{3}\right]_{0}^{1 / m} \\
\Rightarrow \quad \frac{1}{4} &=\left[\frac{2}{3 \sqrt{m}} \cdot \frac{1}{m^{3 / 2}}-\frac{m}{3} \cdot \frac{1}{m_{3}}\right] \\
\Rightarrow \quad \frac{1}{4} &=\left\{\frac{2}{3 m^{2}}-\frac{1}{3 m^{2}}\right\} \\
\Rightarrow \quad \frac{1}{4} &=\frac{1}{3 m^{2}} \Rightarrow m^{2}=\frac{4}{3} \\
\therefore \quad m=\pm \frac{2}{\sqrt{3}}
\end{aligned}
$$
Intersection point of both curves;
$x=m\left(m x^{2}\right)^{2}=m^{3} x^{4}$
$\Rightarrow \quad m^{3} x^{4}-x=0$
$$
\begin{array}{cc}
\Rightarrow & x\left(m^{3} x^{3}-1\right)=0 \\
\Rightarrow & x(m x-1)\left(m^{2} x^{2}+1+m x\right)=0 \\
\Rightarrow & x=0, x=1 / m \text { and } y=0, y=1 / m
\end{array}
$$
We take only the points
$$
=(0,0) \text { and }(1 / m, 1 / m)
$$
Now, the area of the curve
$$
\begin{aligned}
&=\int_{0}^{1 / m}\left(\sqrt{\frac{x}{m}}-m x^{2}\right) d x \\
\text { Given, } \quad \frac{1}{4} &=\left[\frac{2}{3 \sqrt{m}} \cdot x^{3 / 2}-m \cdot \frac{x^{3}}{3}\right]_{0}^{1 / m} \\
\Rightarrow \quad \frac{1}{4} &=\left[\frac{2}{3 \sqrt{m}} \cdot \frac{1}{m^{3 / 2}}-\frac{m}{3} \cdot \frac{1}{m_{3}}\right] \\
\Rightarrow \quad \frac{1}{4} &=\left\{\frac{2}{3 m^{2}}-\frac{1}{3 m^{2}}\right\} \\
\Rightarrow \quad \frac{1}{4} &=\frac{1}{3 m^{2}} \Rightarrow m^{2}=\frac{4}{3} \\
\therefore \quad m=\pm \frac{2}{\sqrt{3}}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.