Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the coefficient of x7 in ax-1bx213 and the coefficient of x-5 in ax+1bx213 are equal, then a4b4 is equal to: 
MathematicsBinomial TheoremJEE MainJEE Main 2023 (10 Apr Shift 1)
Options:
  • A 11
  • B 44
  • C 22
  • D 33.
Solution:
1872 Upvotes Verified Answer
The correct answer is: 22

Given,

The coefficient of x7 in the expansion of  ax2-1bx13 is equal to the coefficient of x-5 in ax+1bx213.

We know that, the general term Tr+1 in the expansion a+bn  is

Tr+1=Crnan-rbr

Applying to ax-1bx213, we get

Tr+1=Cr13ax13-r-1bx2r

Tr+1=-1r×Cr13a13-rx13-3rb-r

Therefore, 13-3r=7r=2 for coefficient of x7.

Thus,

T3=C213a11b2

Similarly, applying to ax+1bx213, we get

Tr+1=Cr13ax13-r1bx2r

Tr+1=Cr13a13-rx13-3rb-r

Therefore, 13-3r=-5 for coefficient of x-5

r=6

So,

T7=C613a7b-6

Hence, applying the given condition we get

C213a11b2=C613a7b-6

a4b4=C613C213

a4b4=13!7!·6!×2!·11!13!

a4b4=11×10×9×86×5×4×3

a4b4=22

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.