Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the curve y=y(x) is the solution of the differential equation 2x2+x5/4dy-yx+x1/4dx=2x9/4dx, x>0 which passes through the point 1, 1-43loge2, then the value of y(16) is equal to 
MathematicsDifferential EquationsJEE MainJEE Main 2021 (17 Mar Shift 2)
Options:
  • A 4313+83loge3
  • B 313+83loge3
  • C 4313-83loge3
  • D 313-83loge3
Solution:
1678 Upvotes Verified Answer
The correct answer is: 4313-83loge3

Given differential equation is 2x2+x5/4dy-yx+x1/4dx=2x9/4dx

2x2+x5/4dydx-yx+x1/4=2x9/4

dydx-yx+x1/42x2+x5/4=2x9/42x2+x5/4

dydx-yx+x1/42xx+x1/4=2x9/42x5/4x3/4+1

dydx-y2x=xx3/4+1

This is a linear differential equation of the type dydx+Py=Q, where P=-12x and Q=xx3/4+1

Now, we have integrating factor I.F.=ePdx

=e-dx2x=e-12logex

=elogex-12=x-12

Now, the solution of the linear differential equation is y×I.F.=Q×I.F.dx+C

y·x-1/2=x·x-1/2x3/4+1dx+C

y·x-1/2 =x1/2x3/4+1dx+C

Put x=t4dx=4t3dt

y·x-1/2 =t2·4t3dtt3+1

y·x-1/2 =4t2t3+1-1t3+1dt

y·x-1/2 =4t2dt-4t2t3+1dt+C

Let, t3+1=u  3t2dt=du

y·x-1/2 =4t2dt-43duu+C

y·x-1/2 =4t33-43logeu+C

y·x-1/2 =4t33-43loget3+1+C

y·x-1/2=4x3/43-43logex3/4+1+C

Now, the curve passes through 1, 1-43loge2

1-43loge2=43-43loge2+C

C=-13

y·x-1/2=43x3/4-43logex3/4+1-13

y=43x5/4-43xlogex3/4+1-x3

Hence, at x=16, we get 

y(16)=43×32-43×4×loge9-43

y16=1243-323loge3

y16=4313-83loge3.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.