Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the curves $\frac{x^2}{\alpha}+\frac{y^2}{4}=1$ and $y^3=16 x$ intersect at right angles, then a value of $\alpha$ is :
MathematicsApplication of DerivativesJEE MainJEE Main 2013 (23 Apr Online)
Options:
  • A
    2
  • B
    $\frac{4}{3}$
  • C
    $\frac{1}{2}$
  • D
    $\frac{3}{4}$
Solution:
2579 Upvotes Verified Answer
The correct answer is:
$\frac{4}{3}$
$$
\begin{aligned}
& \text { } \frac{x^2}{\alpha}+\frac{y^2}{4}=1 \Rightarrow \frac{2 x}{\alpha}+\frac{2 y}{4} \cdot \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-4 x}{\alpha y} \\
& y^3=16 x \Rightarrow 3 y^2 \cdot \frac{d y}{d x}=16 \Rightarrow \frac{d y}{d x}=\frac{16}{3 y^2} \ldots
\end{aligned}
$$
Since curves intersects at right angles
$$
\therefore \frac{-4 x}{\alpha y} \times \frac{16}{3 y^2}=-1 \Rightarrow 3 \alpha y^3=64 x
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.