Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the derivative of the function $f(x)=\left\{\begin{array}{cc}b x^2+a x+4 ; & x \geq-1 \\ a x^2+b ; & x < -1\end{array}\right.$ is everywhere continuous, then
MathematicsContinuity and DifferentiabilityJEE Main
Options:
  • A $a=2, b=3$
  • B $a=3, b=2$
  • C $a=-2, b=-3$
  • D $a=-3, b=-2$
Solution:
2187 Upvotes Verified Answer
The correct answer is: $a=2, b=3$
We have,
$$
\begin{aligned}
f(x) & =\left\{\begin{array}{cc}
a x^2+b ; & x < -1 \\
b x^2+a x+4 ; & x \geq-1
\end{array}\right. \\
\therefore \quad f^{\prime}(x) & =\left\{\begin{array}{cc}
2 a x, & x < -1 \\
2 b x+a, & x \geq-1
\end{array}\right.
\end{aligned}
$$
$\because f(x)$ is differentiable at $x=-1$
$\therefore$ It is continuous at $x=-1$ and hence
$$
\begin{array}{ll}
& \lim _{\left(x \rightarrow-1^{-}\right)} f(x)=\lim _{x \rightarrow-1^{+}} f(x) \\
\Rightarrow \quad & a+b=b-a+4 \\
\Rightarrow \quad & a=2 \\
\text { and also, } & \lim _{\left(x \rightarrow-1^{-}\right)} f^{\prime}(x)=\lim _{x \rightarrow-1^{+}} f^{\prime}(x) \\
\Rightarrow \quad & -2 a=-2 b+a \\
\Rightarrow \quad & 3 a=2 b \Rightarrow b=3 \quad(\because a=2)
\end{array}
$$
Hence, $a=2, b=3$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.