Search any question & find its solution
Question:
Answered & Verified by Expert
If the direction cosines of a line satisfy the relations $l-m+n=0$ and $l m+m m-4 n l=0$, then the direction cosines of the line are
Options:
Solution:
2563 Upvotes
Verified Answer
The correct answer is:
$\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
$\because l, m$ and $n$ are the direction cosines of any line
$\therefore \quad l^2+m^2+n^2=1$...(i)
Given, $l-m+n=0$
$\begin{aligned} & \Rightarrow \quad l=m-n \text { and } l m+m n-4 n l=0 \\ & \Rightarrow \quad(m-n) m+m n-4 n(m-n)=0 \\ & \Rightarrow \quad m^2-m n+m n-4 m n+4 n^2=0 \\ & \Rightarrow \quad m^2+4 n^2-4 m n=0 \Rightarrow(m-2 n)^2=0 \\ & \Rightarrow \quad m=2 n \Rightarrow l=2 n-n=n\end{aligned}$
From Eq. (i), $n^2+4 n^2+n^2=1$
$\Rightarrow \quad n= \pm \frac{1}{\sqrt{6}}, m= \pm \frac{2}{\sqrt{6}}, l= \pm \frac{1}{\sqrt{6}}$
$\therefore$ Direction cosines are $\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
and $\left(-\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)$.
$\therefore \quad l^2+m^2+n^2=1$...(i)
Given, $l-m+n=0$
$\begin{aligned} & \Rightarrow \quad l=m-n \text { and } l m+m n-4 n l=0 \\ & \Rightarrow \quad(m-n) m+m n-4 n(m-n)=0 \\ & \Rightarrow \quad m^2-m n+m n-4 m n+4 n^2=0 \\ & \Rightarrow \quad m^2+4 n^2-4 m n=0 \Rightarrow(m-2 n)^2=0 \\ & \Rightarrow \quad m=2 n \Rightarrow l=2 n-n=n\end{aligned}$
From Eq. (i), $n^2+4 n^2+n^2=1$
$\Rightarrow \quad n= \pm \frac{1}{\sqrt{6}}, m= \pm \frac{2}{\sqrt{6}}, l= \pm \frac{1}{\sqrt{6}}$
$\therefore$ Direction cosines are $\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
and $\left(-\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.