Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the direction cosines of two lines are given by $l+m+n=0$ and $l^2-5 m^2+n^2=0$, then the angle between them is
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2014
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{6}$
  • C $\frac{\pi}{4}$
  • D $\frac{\pi}{3}$
Solution:
2887 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{3}$
Given direction cosines of two lines are
$$
\begin{aligned}
& l+m+n=0 \\
& \quad l^2-5 m^2+n^2=0
\end{aligned}
$$
and
Also,
$$
\begin{aligned}
l^2+m^2+n^2 & =1 \\
\left(I_1, m_1, n_1\right) & =\left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)
\end{aligned}
$$
$$
\text { and } \quad\left(I_2, m_2, n_2\right)=\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)
$$
$$
\begin{aligned}
\therefore & \cos \theta=\left|l_1 I_2+m_1 m_2+n_1 n_2\right| \\
= & \left|-\frac{2}{\sqrt{6}} \times \frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}} \times \frac{1}{\sqrt{6}}-\frac{2}{\sqrt{6}} \times \frac{1}{\sqrt{6}}\right| \\
\Rightarrow \cos \theta & =\left|-\frac{2}{6}+\frac{1}{6}-\frac{2}{6}\right|=\left|-\frac{3}{6}\right| \\
= & \frac{1}{2} \Rightarrow \theta=60^{\circ}=\frac{\pi}{3}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.