Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the direction ratios $a, b, c$ of a line $L$ satisfy the relations $a b+b c+c a=0$ and $6 a b+9 b c+8 c a=0$, then the direction cosines of the line $L$ are
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2020 (11 Sep Shift 1)
Options:
  • A $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
  • B $\frac{2}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{-2}{\sqrt{7}}$
  • C $\frac{-1}{\sqrt{6}}, \frac{\sqrt{3}}{\sqrt{6}}, \frac{\sqrt{2}}{\sqrt{6}}$
  • D $\frac{-3}{7}, \frac{2}{7}, \frac{-6}{7}$
Solution:
2200 Upvotes Verified Answer
The correct answer is: $\frac{-3}{7}, \frac{2}{7}, \frac{-6}{7}$
Given relations $a b+b c+c a=0$
and $\quad 6 a b+9 b c+8 c a=0$
$\therefore \quad 3 b c+2 a c=0 \Rightarrow 3 b+2 a=0$
and $\quad-2 a b+b c=0 \Rightarrow 2 a-c=0$
$\therefore \quad 2 a=-3 b=c \Rightarrow \frac{a}{-3}=\frac{b}{2}=\frac{c}{-6}$
or $\quad \frac{a}{-3 / 7}=\frac{b}{2 / 7}=\frac{c}{-6 / 7}$
$\therefore$ Direction cosines of line $L$ is $\frac{-3}{7}, \frac{2}{7}, \frac{-6}{7}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.