Search any question & find its solution
Question:
Answered & Verified by Expert
If the domain of the function $f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$ is $\mathbf{R}-(\alpha, \beta)$, then $12 \alpha \beta$ is equal to :
Options:
Solution:
2668 Upvotes
Verified Answer
The correct answer is:
32
Domain of $f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$ is
$\begin{aligned}
& 2 x+3 \neq 0 \& x \neq \frac{-3}{2} \text { and }\left|\frac{(x-1)}{2 x+3}\right| \leq 1 \\
& |x-1| \leq|2 x+3|
\end{aligned}$

$\begin{aligned} & \text { For }|2 x+3| \geq|x-1| \\ & x \in(-\infty,-4] \cup\left(-\frac{2}{3}, \infty\right) \\ & \alpha=-4 \& \beta=-\frac{2}{3}: 12 \alpha \beta=32\end{aligned}$
$\begin{aligned}
& 2 x+3 \neq 0 \& x \neq \frac{-3}{2} \text { and }\left|\frac{(x-1)}{2 x+3}\right| \leq 1 \\
& |x-1| \leq|2 x+3|
\end{aligned}$

$\begin{aligned} & \text { For }|2 x+3| \geq|x-1| \\ & x \in(-\infty,-4] \cup\left(-\frac{2}{3}, \infty\right) \\ & \alpha=-4 \& \beta=-\frac{2}{3}: 12 \alpha \beta=32\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.