Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the eccentricity of the hyperbola $x^{2}-y^{2} \operatorname{cosec}^{2} \alpha=25$ is $\sqrt{5}$ times the eccentricity of the ellipse $x^{2} \operatorname{cosec}^{2} \alpha+y^{2}=5$ then $\alpha$ is equal to :
MathematicsHyperbolaJEE Main
Options:
  • A $\tan ^{-1} \sqrt{2}$
  • B $\sin ^{-1} \sqrt{\frac{3}{4}}$
  • C $\tan ^{-1} \sqrt{\frac{2}{5}}$
  • D $\sin ^{-1} \sqrt{\frac{2}{5}}$
Solution:
2935 Upvotes Verified Answer
The correct answer is: $\tan ^{-1} \sqrt{2}$
Eccentrcity of $\frac{x^{2}}{25}-\frac{y^{2}}{25 \sin ^{2} \alpha}=1$ is $\sqrt{1+\sin ^{2} \alpha}$

Eccentricity of $\frac{x^{2}}{5 \sin ^{2} \alpha}+\frac{y^{2}}{5}=1 \quad$ is $\sqrt{1-\sin ^{2} \alpha}$
Given, $\sqrt{1+\sin ^{2} \alpha}=\sqrt{5} \sqrt{1-\sin ^{2} \alpha}$
$$
\begin{array}{l}
\Rightarrow \sin ^{2} \alpha=\frac{2}{3} \\
\Rightarrow \alpha=\sin ^{-1} \sqrt{\frac{2}{3}}=\tan ^{-1} \sqrt{2}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.