Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the elements of matrix A are the reciprocals of elements of matrix $\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right]$,
where $\omega$ is complex cube root of unity, then
MathematicsMatricesMHT CETMHT CET 2020 (14 Oct Shift 1)
Options:
  • A $A^{-1}=I$
  • B $A^{-1}=A^{2}$
  • C $A^{-1}=A$
  • D $A^{-1} $does not exits
Solution:
2578 Upvotes Verified Answer
The correct answer is: $A^{-1} $does not exits
$\begin{aligned} \text { We have, } \mathrm{A} &=\left[\begin{array}{ccc}1 & \frac{1}{\omega} & \frac{1}{\omega^{2}} \\ \frac{1}{\omega} & \frac{1}{\omega^{2}} & 1 \\ \frac{1}{\omega^{2}} & 1 & \frac{1}{\omega}\end{array}\right] \\|\mathrm{A}| &=1\left\{\frac{1}{\omega^{3}}-1\right\}-\frac{1}{\omega}\left(\frac{1}{\omega^{2}}-\frac{1}{\omega^{2}}\right)+\frac{1}{\omega^{2}}\left(\frac{1}{\omega}-\frac{1}{\omega^{4}}\right) \\ &=1(1-1)-0+\frac{1}{\omega^{2}}\left(\frac{1}{\omega}-\frac{1}{\omega}\right) \quad\left[\because \omega^{3}=1 \text { and } \because \omega^{4}=\omega\right] \\|\mathrm{A}| &=0 \Rightarrow \mathrm{A}^{-1} \text { does not exist } \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.