Search any question & find its solution
Question:
Answered & Verified by Expert
If the equation of the circle of radius 3 units which touches the circle $x^2+y^2+6 x-8 y-11=0$ externally at $(3,0)$ is $x^2+y^2+2 g x+2 f y+c=0$, then $3 g-4 f+c=$
Options:
Solution:
2761 Upvotes
Verified Answer
The correct answer is:
$5$
According to question

$\begin{aligned}
& (3,0)=\left(\frac{-6 g-9}{6+3}, \frac{-6 f+12}{6+3}\right) \\
& 3=\frac{-6 g-9}{6+3} \Rightarrow g=-6 \text { and } O=\frac{-6 f+12}{6+3} \Rightarrow f=2 \\
& \text { Given that } \sqrt{g^2+f^2-c}=3 \\
& \Rightarrow 36+4-c=9 \Rightarrow c=31
\end{aligned}$
Now, $3 g-4 f+c=-18-8+31=5$

$\begin{aligned}
& (3,0)=\left(\frac{-6 g-9}{6+3}, \frac{-6 f+12}{6+3}\right) \\
& 3=\frac{-6 g-9}{6+3} \Rightarrow g=-6 \text { and } O=\frac{-6 f+12}{6+3} \Rightarrow f=2 \\
& \text { Given that } \sqrt{g^2+f^2-c}=3 \\
& \Rightarrow 36+4-c=9 \Rightarrow c=31
\end{aligned}$
Now, $3 g-4 f+c=-18-8+31=5$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.