Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the equation of the plane containing the line x+2y+3z-4=0=2x+y-z+5 and perpendicular to the planer=i^-j^+λi^+j^+k^+μ(i^-2j^+3k^) is ax+by+cz=4 then (a-b+c) is equal to 
MathematicsThree Dimensional GeometryJEE MainJEE Main 2023 (08 Apr Shift 1)
Options:
  • A 18
  • B 22
  • C 20
  • D 24
Solution:
2278 Upvotes Verified Answer
The correct answer is: 22

Given,

The equation of the plane containing the line x+2y+3z-4=0=2x+y-z+5 and perpendicular to the planer=i^-j^+λi^+j^+k^+μ(i^-2j^+3k^) is ax+by+cz=4

Now let equation of required plane be,

P: x+2y+3z-4+α2x+y-z+5=0

(2α+1)+α+2y+3-αz=4-5α

So, the normal vector is given by,

n1=(2α+1)i^+(α+2)j^+(3-α)k^

And normal of the plane r=i^-j^+λi^+j^+k^+μ(i^-2j^+3k^) will be, 

n2=i^j^k^1111-23=5j^-2j^-3k^

Now given they are perpendicular, so by perpendicular condition we get,

n1·n2=0

52α+1-2α+2-33-α=0

11α+-8=0

α=811

Hence, equation of required plane will be,

P:2711x+3011y+2511z-411=0

27x+30y+25z=4

Now comparing with ax+by+cz=4 we get,

 a=27, b=30, c=25

Hence, a-b+c=22

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.