Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the equation $x^{2}+k x+1=0$ has the roots $\alpha$ and $\beta$, then what is the value of $(\alpha+\beta) \times\left(\alpha^{-1}+\beta^{-1}\right) ?$
MathematicsQuadratic EquationNDANDA 2008 (Phase 1)
Options:
  • A $\mathrm{k}^{2}$
  • B $\frac{1}{\mathrm{k}^{2}}$
  • C $2 \mathrm{k}^{2}$
  • D $\frac{1}{\left(2 \mathrm{k}^{2}\right)}$
Solution:
2113 Upvotes Verified Answer
The correct answer is: $\mathrm{k}^{2}$
As given: Roots of the equations $x^{2}+k x+1=0$ are $\alpha$ and $\beta .$ Given expression $(\alpha+\beta)\left(\alpha^{-1}+\beta^{-1}\right)=(\alpha+\beta)\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)$
$=(\alpha+\beta)\left(\frac{\alpha+\beta}{\alpha \beta}\right)=\frac{(\alpha+\beta)^{2}}{\alpha \beta}=\frac{(-k)^{2}}{1}=\mathrm{k}^{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.