Search any question & find its solution
Question:
Answered & Verified by Expert
If the expansion in powers of $x$ of the function $\frac{1}{(1-a x)(1-b x)}$ is $a_0+a_1 x+a_2 x^2+a_3 x^3+\ldots$, then $a_n$ is
Options:
Solution:
2033 Upvotes
Verified Answer
The correct answer is:
$\frac{b^{n+1}-a^{n+1}}{b-a}$
$\frac{b^{n+1}-a^{n+1}}{b-a}$
$(1-a x)^{-1}(1-b x)^{-1}=\left(1+a x+a^2 x^2+\ldots \ldots\right)\left(1+b x+b^2 x^2+\ldots.\right)$
$\therefore$ coefficient of $x^n=b^n+a b^{n-1}+a^2 b^{n-2}+\ldots .+a^{n-1} b+a^n=\frac{b^{n+1}-a^{n+1}}{b-a}$
$\therefore a_n=\frac{b^{n+1}-a^{n+1}}{b-a}$
$\therefore$ coefficient of $x^n=b^n+a b^{n-1}+a^2 b^{n-2}+\ldots .+a^{n-1} b+a^n=\frac{b^{n+1}-a^{n+1}}{b-a}$
$\therefore a_n=\frac{b^{n+1}-a^{n+1}}{b-a}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.