Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the force is given by $F=a t+b t^2$ with $t$ as time. The dimensions of $a$ and $b$ are
PhysicsUnits and DimensionsAP EAMCETAP EAMCET 2010
Options:
  • A $\left[\mathrm{MLT}^{-4}\right],\left[\mathrm{MLT}^{-2}\right]$
  • B $\left[\mathrm{MLT}^{-3}\right],\left[\mathrm{MLT}^{-4}\right]$
  • C $\left[\mathrm{ML}^2 \mathrm{~T}^{-3}\right],\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]$
  • D $\left[\mathrm{ML}^2 \mathrm{~T}^{-3}\right],\left[\mathrm{ML}^3 \mathrm{~T}^{-4}\right]$
Solution:
1587 Upvotes Verified Answer
The correct answer is: $\left[\mathrm{MLT}^{-3}\right],\left[\mathrm{MLT}^{-4}\right]$
Dimension of $a t=$ Dimension of $F$
$[a t]=[F]$
$[a]=\left[\frac{F}{t}\right]$
$[a]=\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{~T}}\right]$
$[a]=\left[\mathrm{MLT}^{-3}\right]$
Dimension of $b t^2=$ Dimension of $F$
$\left[b t^2\right]=[F]$
$[b]=\left[\frac{F}{t^2}\right]$
$[b]=\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{~T}^2}\right]$
$[b]=\left[\mathrm{MLT}^{-4}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.