Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

If the function f(x), defined below is continuous in the interval [0,π], then_____

f(x)=x+a2(sinx),0x<π42x(cotx)+b,π4xπ2a(cos2x)b(sinx),π2<xπ

MathematicsContinuity and DifferentiabilityAP EAMCETAP EAMCET 2021 (19 Aug Shift 1)
Options:
  • A a=π6,b=π12
  • B a=π6,b=π12
  • C a=π6,b=π12
  • D a=π6,b=π12
Solution:
2497 Upvotes Verified Answer
The correct answer is: a=π6,b=π12
Given that f(x)=x+a2(sinx),0x<π42x(cotx)+b,π4xπ2a(cos2x)b(sinx),π2<xπ

fx is continuous in 0, π

If fx is continuous in a,b that means it should be continuous at all points in a,b.

limxπ4fx=fπ4

π4+a=π2+b

a-b= π4----(I)

limxπ2fx=fπ2

-a-b=b

a=-2b---(II)

From equation (I) & (II)

-3b = π4 b = -π12

a = π6

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.