Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

If the function f(x), defined below, is continuous on the interval [0,8], then

f(x)=x2+ax+b,0x<23x+2,2x42ax+5b,4<x8

MathematicsContinuity and DifferentiabilityAP EAMCETAP EAMCET 2021 (20 Aug Shift 1)
Options:
  • A a=3, b=-2
  • B a=-3, b=2
  • C a=-3, b=-2
  • D a=3, b=2
Solution:
2392 Upvotes Verified Answer
The correct answer is: a=3, b=-2

Given that

f(x)=x2+ax+b,0x<23x+2,2x42ax+5b,4<x8

Since f(x) is continuous on 0,8 i.e. fx is continuous at x=2 and x=4

L.H.L=f(x)=R.H.L

limx2fx=f(2)

limx2x2+ax+b=3x+2=8

4+2a+b=6+2

or 2a+b=4    (i)....

f(4)=limf(x)x4

3x+4=34+2=limx42ax+5b

 14=8a+5b    (ii).....

Solving i & ii

a=3 & b=-2

 

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.