Search any question & find its solution
Question:
Answered & Verified by Expert
If the half lives of the first order reaction at $350 \mathrm{~K}$ and $300 \mathrm{~K}$ are 2 and 20 seconds respectively, the activation energy of the reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$ is
Options:
Solution:
2906 Upvotes
Verified Answer
The correct answer is:
40.2
Given: $t_{1 / 2}(\mathrm{l})=20 \mathrm{~s}$
$$
\begin{aligned}
& t_{1 / 2}(2)=2 \mathrm{~s} \quad\left[\because t_{1 / 2} \propto \frac{1}{k}\right] \\
& T_1=300 \mathrm{~K}, T_2=350 \mathrm{~K} \\
& \because \quad \log \frac{k_2}{k_1}=-\frac{E_a}{2.303 R}\left[\frac{1}{T_2}-\frac{1}{T_1}\right] \\
& \therefore \quad \log \frac{\frac{0.693}{2}}{\frac{0.693}{20}}=-\frac{E_a}{2.303 \times 8.314}\left[\frac{1}{350}-\frac{1}{300}\right] \\
& \Rightarrow \quad \log \frac{20}{2}=-\frac{E_a}{2.303 \times 8.314}\left[\frac{-50}{350 \times 300}\right] \\
& \therefore \quad E_a=\frac{2.303 \times 8.314 \times 350 \times 300}{50} \\
& E_a=40.209 \mathrm{~kJ} / \mathrm{mol} \\
&
\end{aligned}
$$
$$
\begin{aligned}
& t_{1 / 2}(2)=2 \mathrm{~s} \quad\left[\because t_{1 / 2} \propto \frac{1}{k}\right] \\
& T_1=300 \mathrm{~K}, T_2=350 \mathrm{~K} \\
& \because \quad \log \frac{k_2}{k_1}=-\frac{E_a}{2.303 R}\left[\frac{1}{T_2}-\frac{1}{T_1}\right] \\
& \therefore \quad \log \frac{\frac{0.693}{2}}{\frac{0.693}{20}}=-\frac{E_a}{2.303 \times 8.314}\left[\frac{1}{350}-\frac{1}{300}\right] \\
& \Rightarrow \quad \log \frac{20}{2}=-\frac{E_a}{2.303 \times 8.314}\left[\frac{-50}{350 \times 300}\right] \\
& \therefore \quad E_a=\frac{2.303 \times 8.314 \times 350 \times 300}{50} \\
& E_a=40.209 \mathrm{~kJ} / \mathrm{mol} \\
&
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.