Search any question & find its solution
Question:
Answered & Verified by Expert
If the highest modulating frequency of the wave is $5 \mathrm{kHz}$, then the number of stations that can be accommodated in a $150 \mathrm{kHz}$ bandwidth is
Options:
Solution:
2508 Upvotes
Verified Answer
The correct answer is:
5
Given,
Highest modulating frequency, $f_m=5 \mathrm{kHz}$
$=5 \times 10^3 \mathrm{~Hz}$
$\therefore$ Bandwidth $(\mathrm{BW}), f^{\prime}=2 f_m$
$=2 \times 5 \times 10^3 \mathrm{~Hz}=10^4 \mathrm{~Hz}$
Total bandwidth, $f=150 \mathrm{kHz}$
$=150 \times 10^3 \mathrm{~Hz}$
$\therefore$ Number of stations
$=\frac{f}{f^{\prime}}=\frac{150 \times 10^3}{10^4}=15$
Highest modulating frequency, $f_m=5 \mathrm{kHz}$
$=5 \times 10^3 \mathrm{~Hz}$
$\therefore$ Bandwidth $(\mathrm{BW}), f^{\prime}=2 f_m$
$=2 \times 5 \times 10^3 \mathrm{~Hz}=10^4 \mathrm{~Hz}$
Total bandwidth, $f=150 \mathrm{kHz}$
$=150 \times 10^3 \mathrm{~Hz}$
$\therefore$ Number of stations
$=\frac{f}{f^{\prime}}=\frac{150 \times 10^3}{10^4}=15$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.