Search any question & find its solution
Question:
Answered & Verified by Expert
If the image of the point $(-4,5)$ in the line $x+2 y=2$ lies on the circle $(x+4)^2+(y-3)^2=r^2$, then $\mathrm{r}$ is equal to:
Options:
Solution:
2852 Upvotes
Verified Answer
The correct answer is:
2
Image of point $(-4,5)$
$\frac{x-x_1}{a}=\frac{y-y_1}{b}=-2\left(\frac{a x_1+b y_1+c}{a^2+b^2}\right)$
Line: $x+2 y-2=0$
$\frac{x+4}{1}=\frac{y-5}{2}=-2\left(\frac{-4+10-2}{1^2+2^2}\right)$
$=\frac{-8}{5}$
$x=-4-\frac{8}{5}=-\frac{28}{5}$
$y=-\frac{16}{5}+5=\frac{9}{5}$
Point lies on circle $(x+4)^2+(y-3)^2=r^2$
$\begin{aligned} & \frac{64}{25}+\left(\frac{9}{5}-3\right)^2=r^2 \\ & \frac{100}{25}=r^2, r=2\end{aligned}$
$\frac{x-x_1}{a}=\frac{y-y_1}{b}=-2\left(\frac{a x_1+b y_1+c}{a^2+b^2}\right)$
Line: $x+2 y-2=0$
$\frac{x+4}{1}=\frac{y-5}{2}=-2\left(\frac{-4+10-2}{1^2+2^2}\right)$
$=\frac{-8}{5}$
$x=-4-\frac{8}{5}=-\frac{28}{5}$
$y=-\frac{16}{5}+5=\frac{9}{5}$
Point lies on circle $(x+4)^2+(y-3)^2=r^2$
$\begin{aligned} & \frac{64}{25}+\left(\frac{9}{5}-3\right)^2=r^2 \\ & \frac{100}{25}=r^2, r=2\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.