Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the line $6 x-y-4=0$ touches the curve $y^{2}=a x^{3}+b$ at the point $(1,2)$ then
$a+b=$
MathematicsApplication of DerivativesMHT CETMHT CET 2020 (13 Oct Shift 2)
Options:
  • A 8
  • B $-4$
  • C 4
  • D 12
Solution:
1400 Upvotes Verified Answer
The correct answer is: 4
Slope of line $6 x-y-4=0$ is 6 and this line is tangent to the curve $y^{2}=a x^{3}+b$ at point $(1,2)$
$\therefore 2 y \frac{d y}{d x}=3 a x^{2} \Rightarrow\left(\frac{d y}{d x}\right)_{(1,2)}=\frac{3 a x^{2}}{2 y}=\frac{3 a}{4}$ and $\frac{3 a}{4}=6 \Rightarrow a=8$
Now point $(1,2)$ lies on given curve.
$\therefore(2)^{2}=(8)(1)^{3}+b \Rightarrow b=-4 \Rightarrow a+b=8-4=4$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.