Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the line $l x+m y=1$ is a normal to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, then $\frac{a^2}{l^2}-\frac{b^2}{m^2}$ is equal to
MathematicsHyperbolaAP EAMCETAP EAMCET 2007
Options:
  • A $a^2-b^2$
  • B $a^2+b^2$
  • C $\left(a^2+b^2\right)^2$
  • D $\left(a^2-b^2\right)^2$
Solution:
1345 Upvotes Verified Answer
The correct answer is: $\left(a^2+b^2\right)^2$
If $l x+m y+n=0$ is normal to the hyperbola
$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$
Then $\frac{a^2}{l^2}-\frac{b^2}{m^2}=\frac{\left(a^2+b^2\right)^2}{n^2}$
Here, $n=-1$, therefore $\frac{a^2}{l^2}-\frac{b^2}{m^2}=\left(a^2+b^2\right)^2$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.