Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the line \( \mathrm{y}+\mathrm{x}=0 \) bisects two chords drawn from a point \( \left(\frac{1+a \sqrt{2}}{2}, \frac{1-a \sqrt{2}}{2}\right) \) to the circle \( 2 x^{2}+2 y^{2}-(1+a \sqrt{2}) x-(1-a \sqrt{2}) y=0 \), then \( a \) lies in the interval \( (-\infty,-\lambda) \cup(\lambda, \infty) \), the numerical quantity \( \lambda \) should be equal to
MathematicsCircleJEE Main
Solution:
2802 Upvotes Verified Answer
The correct answer is: 2
Equation of chord AB whose mid point is h, -h is
            T=S1
2 xh - 2 yh - 1 + 2 a x + h 2 - 1 - 2 a y - h 2
                = 2 h 2 + 2 h 2 - 1 + 2 a h + 1 - 2 a h
4 xh - 4 yh - 1 + 2 a x + h - 1 - 2 a y - h
= 8 h 2 - 2 1 + 2 a h + 2 1 - 2 a h
   
              
x 4 h - 1 + 2 a - y 4 h + 1 - 2 a - h 1 + 2 a + h 1 - 2 a = 8 h 2 - 2 1 + 2 a h + 2 1 - 2 a h
or 8 h 2 - 1 + 2 a h + 1 - 2 a h - x 4 h - 1 + 2 a + y 4 h + 1 - 2 a = 0
It passes through A 1 + 2 a 2 , 1 - 2 a 2  then
8 h 2 - 2 2 ah - 1 + 2 a 2 4 h - 1 + 2 a + 1 - 2 a 2 4 h + 1 - 2 a
or  8 h 2 - 2 2 ah - 2 h 1 + 2 a + 1 + 2 a 2 2 + 2 h 1 - 2 a + 1 - 2 a 2 2 = 0
or  8 h 2 - 6 2 ah + 1 + 2 a 2 = 0
Hence for two real and different values of h, we must have - 6 2 a 2 - 4 · 8 · 1 + 2 a 2 > 0
    
or           a 2 - 4 > 0
           a + 2 a - 2 > 0
∴      A - , - 2 2 ,

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.