Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the line $x \cos \alpha+y \sin \alpha=p$ represents the common chord of the circles $x^{2}+y^{2}=a^{2}$ and $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{b}^{2}(\mathrm{a}>\mathrm{b}),$ where $\mathrm{A}$ and $\mathrm{B}$ lie ont he first circle and $\mathrm{P}$ and $\mathrm{Q}$ lie on the second circle, then AP is equal to
MathematicsCircleJEE Main
Options:
  • A $\sqrt{a^{2}+p^{2}}+\sqrt{b^{2}+p^{2}}$
  • B $\sqrt{a^{2}-p^{2}}+\sqrt{b^{2}-p^{2}}$
  • C $\sqrt{a^{2}-p^{2}}-\sqrt{b^{2}-p^{2}}$
  • D $\sqrt{a^{2}+p^{2}}-\sqrt{b^{2}+p^{2}}$
Solution:
1839 Upvotes Verified Answer
The correct answer is: $\sqrt{a^{2}-p^{2}}-\sqrt{b^{2}-p^{2}}$
The given circles are concentric with centre at (0,0) and the length of the perpendicular from (0,0) on the given line is $\mathrm{p}$. Let $\mathrm{OL}=\mathrm{p}$
then, $\mathrm{AL}=\sqrt{\mathrm{OA}^{2}-\mathrm{OL}^{2}}=\sqrt{\mathrm{a}^{2}-\mathrm{p}^{2}}$
and $\mathrm{PL}=\sqrt{\mathrm{OP}^{2}-\mathrm{OL}^{2}}=\sqrt{\mathrm{b}^{2}-\mathrm{p}^{2}}$
$\Rightarrow \mathrm{AP}=\sqrt{\mathrm{a}^{2}-\mathrm{p}^{2}}-\sqrt{\mathrm{b}^{2}-\mathrm{p}^{2}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.