Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the lines $x+y-1=0, k x+2 y+1=0$ and $4 x+2 k y+7$ $=0$ are concurrent, then $k=$
MathematicsStraight LinesTS EAMCETTS EAMCET 2023 (14 May Shift 2)
Options:
  • A 2
  • B $\frac{13}{2}$
  • C $\frac{-13}{2}$
  • D $-2$
Solution:
1879 Upvotes Verified Answer
The correct answer is: $\frac{-13}{2}$
$\left|\begin{array}{ccc}1 & 1 & -1 \\ k & 2 & 1 \\ 4 & 2 k & 7\end{array}\right|=0$
$\begin{aligned} & \Rightarrow \quad(14-2 k)-(7 k-4)-\left(2 k^2-8\right)=0 \\ & \Rightarrow \quad 2 k^2+9 k-26=0 \\ & \Rightarrow \quad 2 k^2+13 k-4 k-26=0 \\ & \Rightarrow \quad k(2 k+13)-2(2 k+13)=0 \\ & \Rightarrow \quad(2 k+13)(k-2)=0 \\ & \Rightarrow \quad k=2, \frac{-13}{2}\end{aligned}$
But at $k=2$, lines will be coincident
$\therefore \quad k=\frac{-13}{2}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.