Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the mean of a poisson distribution is $\frac{1}{2}$, then the ratio of $P(X=3)$ to $P(X=2)$ is
MathematicsProbabilityAP EAMCETAP EAMCET 2002
Options:
  • A $1: 2$
  • B $1: 4$
  • C $1: 6$
  • D $1: 8$
Solution:
1927 Upvotes Verified Answer
The correct answer is: $1: 6$
Given that $\lambda=\frac{1}{2}$
Now, $P(X=n)=\frac{\lambda^n}{n !} e^\lambda$
$$
\begin{aligned}
& \therefore \quad P(X=3)=\frac{\left(\frac{1}{2}\right)^3}{3 !} e^{1 / 2} \\
& \text { and } P(X=2)=\frac{\left(\frac{1}{2}\right)^2}{2 !} e^{1 / 2} \\
& \therefore \quad \frac{P(X=3)}{P(X=2)}=\frac{\frac{\left(\frac{1}{2}\right)^3 e^{1 / 2}}{3 !}}{\frac{\left(\frac{1}{2}\right)^2 e^{1 / 2}}{2 !}}=\frac{\left(\frac{1}{2}\right)^3 e^{1 / 2} 2 !}{\left(\frac{1}{2}\right)^2 e^{1 / 2} 3 !}=\frac{\frac{1}{2}}{3}=\frac{1}{6} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.